PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification :

Not classified A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/41455

20 July 2000 (20.07.00)

(21) International Application Number: PCT/CAQ0/00027

(22) International Filing Date: 12 January 2000 (12.01.00)

(30) Priority Data:

60/115,635 12 January 1999 (12.01.99) Us

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
US
Filed on

09/481,628 (CON)
12 January 2000 (12.01.00)

(71) Applicant (for all designated States except US): DIGITAL
VIDEO BROADCASTING INC. [CA/CA]; 608-1200 Pen-
der St. West, Vancouver, British Columbia V6M 2W2 (CA).

(72) Inventor; and
(75) Inventor/Applicant (for US only): SOKOL, John, L. [US/US];
136 Maplewood Ave., Clinton, NJ 07013 (US).

(74) Agent: SCHISLER, Mark; Bereskin & Parr, 40 King St. West,
40th Floor, Toronto, Ontario MSH 3Y2 (CA).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, F1, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG,
US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: HIGH PERFORMANCE WEB SERVER

(57) Abstract

36
The invention is a high performance web server. f)
A single server process on the web server serves data CLIENT
to a plurality of requesters. Should the number of 38 40 #1
requesters become too great for a single process, further 32 5
processes will be spawned as required. By utilizing /) CHILD
as few processes as possible to serve a plurality of PROCESS °
requesters, system overhead to manage processes is P’;Aggggs #1 .
greatly reduced over existing web servers. In addition, .
the invention acts as a cache server by serving data to |
the requesters from RAM. |
| [40 CLIENT
| #n
|
|
| * 36"
|
I
.
36
o 2
CHILD
PROCESS CLIENT | @
#m
S .
38 *
.
a0 °
/ CLIENT |2z

50

36

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CcG
CH
CI
cM
CN
CU
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Teeland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T3
™
TR

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/41455 PCT/CA00/00027

-1-

Title: HIGH PERFORMANCE WEB SERVER

FIELD OF THE INVENTION

The present invention relates to the field of computers
connected to the internet that act as servers of data. In particular, the
present invention relates to a high performance web server or cache server

designed to provide rapid and reliable access to large amounts of data.

BACKGROUND OF THE INVENTION

Most people know about the Internet. Few people,
however, understand how it works and the details of how computers
connected long distances via a common set of protocols and on a shared
telecommunication resource works. The present invention is a
revolutionary Internet server, or information provider as another way of
looking at it, that can simultaneously serve more visitors to a given
website than other servers (which are based on more traditional
techniques). An explanation of how it does this first requires a more
detailed understanding of how the Internet works and its rapid

improvement in technology over the past 30 years.

In the Early 1960’s in the RAND corporation , America’s
foremost Cold War think-tank was faced with a problem. How to make a
communications network that could withstand a nuclear attack? Any
traditional network at that time was like the phone company with central
command and control location, should a problem occur with the control
center all systems would stop. In 1964 Paul Baran made public a plan for a
network that would have no central authority and was designed to operate
with major parts of the network destroyed. The principles are simple.
The network is assumed to be unreliable at all times, and it is designed to

work around sections that are not working. Each machine (node) on the

10

15

20

25

30

WO 00/41455 PCT/CA00/00027

-2-

network has equal authority with every other node. The messages passed
between nodes are broken into smaller pieces called packets. Each packet
contains the address of where it is going and a checksum to verify that it is
correct. The nodes on the network pass each packet along in the direction
of its final destination until it arrives. The path that these packets take
may be different for each and it is possible that a packet may get lost,
copied, or arrive in a different order than it was sent. It is the
responsibility of the destination node to collect and organize these packets
into the original message and ask for missing packets if any do not arrive

after a certain period of time.

This concept was funded in 1969 by the Pentagon’s
Advanced Research Projects Agency (ARPA) to connect several
supercomputers around the country, it was called the ARPANET. Initially
the NCP or Network Control Protocol was used. A protocol describes the
way the computers on the network communicate with one another, make
decisions and resolve problems. NCP was then replaced with an
improved protocol called TCP/IP or Transmission Control
Protocol/Internet Protocol. One of the major things about TCP/IP is that it
makes no assumption about the type of connection that it is being used.
TCP/IP allows the internet to go everywhere, it is one of the few protocols
that will work for both a LAN (Local Area Network) and a WAN (Wide
Area Network).

Over the years the number of computers joining the
ARPANET grew rapidly. One of the most popular uses of the ARPANET
became e-mail, but this was limited to only those who could afford the
expense of special leased lines to directly connect to the ARPANET. As a
solution for those unable to receive e-mail a new method was devised in
1976. UUCP (Unix to Unix Copy Program) was developed to pass e-mail
along from one UNIX machine to another UNIX machine over standard

phone lines using modems. UUCP uses a store and forward method and

10

15

20

25

30

WO 00/41455 PCT/CA00/00027

-3-

as such is slow and complicated, but it did extend the reach of e-mail. This
network became known as the USENET and although it is not a part of the
Internet it has played a vital role in the development of the Internet.
Machines called gateways have been established that allow mail, news and

even file transfers to pass between the Internet and other networks like the
USENET.

In 1982 - 1983 the ARPANET officially switched to
TCP/IP from NCP. The TCP/IP protocols are in the public domain and
with the released of BSD UNIX version 4.2 from Berkeley, a cheap, reliable,
operating system became available with full TCP/IP support. BSD UNIX
came with full source code allowing people to port this operating system
and networking tools to almost every type of computer made at the time.
All the networking software was free and it was almost impossible to stop

people from connecting to the Internet.

Universities around the country were linking together
and installing Ethernet across their campuses. Ethernet is a LAN
networking standard that originally used a 1/2 inch round bright orange
cable run throughout ceilings. It was very simple to plug in this cable and
obtain instant high speed access to almost every computer in every
university around the world. The demand for this was enormous. After a
point, most college and universities offered free shell accounts to students
and faculty. A shell account is an account on a UNIX machine that allows
you run a TCP/IP program on that machine and see the results over a
terminal. Soon people were able to call from home using modems and
check their e-mail, transfer large files using FIP (File Transfer Protocol),
read thousands of news groups or operate a computer on the other side of
the country just as if they were sitting directly in front of it. With access to
such a powerful system, students started developing more software for the
Internet, most of it in the public domain. As these students left school the

demand to use these services from home and business brought about

10

15

20

25

30

WO 00/41455 ’ PCT/CA00/00027

-4-

many private companies that did nothing else but offer university like
shell accounts for UNIX machines. As the price of modems dropped and
the speeds became higher new things became possible. One of these was
SLIP and later PPP, which allowed TCP/IP to travel over the temporary
modem connections allowing home users to be directly connected to the
Internet for the first time. FTP servers became popular as a way to
exchange free software and documents and the demand on some of these

servers became high.

Even so, navigating the Internet was a complicated
procedure. On-line users were forced to memorize long, esoteric UNIX
commands or deal with awkward programs. Many attempts were made to
bring these services to computers running Microsoft Windows and
Macintosh with mild success. In 1989 Tim Berners-Lee, a European
scientist, developed the World Wide Web and released the first web server
CERN-HTTPD. The World Wide Web was text based and had only a small
impact until around late 1993 when the National Center for
Supercomputing Applications (NCSA) released Mosaic, the first true web
browser into the public domain. They also released NCSA-HTTPD their
implementation of a WEB server. Mosaic added a windows interface to
the Internet. Several other important innovations also came with Mosaic
including URL (Uniform Resource Locators) and MIME (Multipurpose
Internet Mail Extensions) types that allow servers to tell what type of data
is in a file being sent. Mosaic supported most Internet applications, but the
World Wide Web with a hypertext interface allowing images and text to be

displayed at the same time soon came to dominate.

The World Wide Web made the Internet extremely easy
to navigate and allowed an explosion of new content to take place with
video, sound, text, and pictures on virtually any subject. With the content
came an exponential flood of new Internet users. Suddenly the Internet

became a serious business and drove the demand for new applications

10

15

20

25

WO 00/41455 PCT/CA00/00027

-5-

such as: e-commerce, advertising, and live event broadcasting.
Performance reliability and security have suddenly become a multi billion

dollar industry.

Through out all of this the basic server architecture has
changed little. Most servers are based on the early example set by FTP.
The FTP architecture is very simplistic and thus not very efficient and was

never intended to support the type of loads of the current Internet.

This rather lengthy discussion leads to web servers and
how the phenomenon of the Internet has fueled growth for this niche
market. Ultimately, Internet growth can only grow as fast as new
technology is developed to host, translate, and transport information faster
and more efficiently. The present invention will make a significant

impact in this competitive market.

The following is a description of how a user would
connect to an ISP (Internet Service Provider) and obtain web pages and
graphics from a web server. First, the user connects from their “client” PC
to an ISP via a communication link and requests a file (for example an
image). The ISP receives the transmitted request and forwards it to the
web server that controls access to the file. The web server then processes
the request and sends the requested file back to the ISP. The ISP then
transfers the requested file to the client PC. It is important to note that the
transmission of the request for the file and the transmission of the file
may occur over communication links such as telephone lines, coaxial
cable or wireless transmissions, or any other form of communication
allowing the various computers to exchange data. Further, the request and
transmission may pass through multiple machines in an indirect path as
is the nature of the internet. In this scenario the web server is only
processing one request from one ISP, but typically, a given web server is

connected to a plurality of other machines on the Internet and if popular

10

15

20

25

WO 00/41455 PCT/CA00/00027

-6-

enough could receive thousands of hits (i.e. requests) per second.

Current web servers are largely based on research and
development completed decades ago. This may not seem very old but
Internet hardware and software solutions have been maturing so rapidly
that what worked ten years ago, simply cannot suffice for the demands
placed on servers today. Chief among the problems current web servers
face is poor socket programming (i.e. communication connections) which
leads to limitations in both response times and the maximum number of

connections that a web server can provide in a given moment.

During the early phases of development of the Internet,
researchers used FTP servers to transfer documents across to other
researchers. As the number of nodes on the Internet at the time was not
great, these servers were programmed to use a new thread process for each
request made to the server. A user accessing the FTP server is given
permission (read, write, modify) based on their username and password.
Anonymous users typically get access to only read (this includes

download) the files from the server.

Web servers and the HTTP (Hyper Text Transfer
Protocol) have been the major influence for the Internet’s rapid growth in
the past five years. Overall HTTP is much simpler than FTP, but also can
place a greater demand on the server than FTP did for the same level of
downloads. In addition, the more appealing automatic display of graphical

data increases the user demand of these servers.

Current Web servers are based on the original CERN
and NCSA server that is based on the original twenty year old FTP server
source code. With HTTP, clients still access files, but the FTP “download
session” is eliminated, connections are used for a single file transfer and

then are closed. The default is that no passwords or usernames are

10

15

20

25

WO 00/41455 . PCT/CA00/00027

-7-

required and some information about the file contents is now transmitted
in the form of MIME headers. The elimination of a constant connection
forces a web browser to establish many short duration connections to fetch
each file. In order to increase speed many browsers will open up several
connections in parallel. The server has more TCP/IP connections because
of this, and these connections are constantly being opened and closed
much more than FTP would have had. HTTP was clearly not designed

with server efficiency in mind.

Within the foreseeable near future, end user
connections to the Internet will rapidly improve and Internet backbone
connection speeds will have increased substantially. Existing server
technology will be unable to cope with the traffic, i.e. the number of hits

and data that must be transmitted.

One method of improving the performance for
delivering data on the internet is through the use of cache servers. A basic
understanding of how computers work is essential to understanding the
behaviour of cache based servers. In computers, there are two basic types
of memory; the hard drive and RAM. The hard drive is the long-term
memory that stores data even when the computer is turned off. RAM, on
the other hand, holds the most frequently accessed data because it operates
faster than a hard drive. The concept of caching is to keep a copy of the
most recently accessed data in RAM after reading it from the hard disk.
This is so the CPU will not need to access the hard disk again for the same
data. This is much faster than having to re-read the same files from the

disk repeatedly.

A “cache server” is a class of server that acts as a web
server but serves as a bridge between the client’s request for a file and a
slower web server that offers the content. If content is requested that is not

stored at the cache server, that request is passed further on to the web

10

15

20

25

WO 00/41455 PCT/CA00/00027

-8-

server. A cache server stores the most frequently requested files into RAM
and/or high speed disk arrays in order to speed up content delivery to
outside requests for the files. Nonetheless, cache servers often suffer the
same limitations as web servers, and most emphasize using the disk
storage in a faster and more efficient manner then the traditional
operating system of the web server they try to enhance. They are best used
to somewhat improve the performance of hard to reach web sites and to
reduce the cost of bandwidth used by ISP’s by storing local copies of
frequently requested files instead of consuming precious bandwidth to the
external internet. In practice cache servers often degrade access speed

rather then improve it but they can reduce an ISP’s bandwidth costs.

The present invention resolves the problem of
inefficient file serving by eliminating the traditional FTP based
architecture. It is also similar to some cache servers in that it makes

extensive use of RAM, but has a number of very significant differences.

The present invention can make a significant impact on
web servers that experience high hit volumes such as search engine sites,
media intensive sites that serve still and motion images and video, and
other large sites. Currently these sites are held on extremely large,
powerful and expensive machines, all of which is unnecessary with the
use of the present invention. ISP's, enterprises, and others would benefit
from the use of the present invention because of the reduced bandwidth
requirements and the related benefits; lower costs, faster access, and room

for more users.

BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention there is
provided a method for implementing a web server, said method

comprising the steps of:

10

15

20

25

30

WO 00/41455 PCT/CA00/00027

-9-

a) initializing a memory resident web server parent
process;

b) establishing a communication connection with each
requesting client;

c) serving data to said each requesting client; and

d) continually repeating steps b) to c), wherein the
method includes communicating with a plurality of requesting clients

simultaneously through the web server parent process.

In accordance with the present invention there is
further provided a web server comprising;:

a) a computing environment;

b) a single web server parent process within said
computing environment, said single process being resident in RAM for
serving a plurality of clients;

¢) communication means for establishing a plurality of
communication links, each of said links connecting said single process to
one of said plurality of clients; and

d) data serving means for serving data from said single
process to each of said plurality of clients via the communication links

connected to said clients.

In accordance with the present invention there is
further provided a web server connected to the Internet, said web server
being one of a plurality of computers connected to the Internet, said web
server having a single serving process, said single process being resident in
RAM and serving data to a plurality of clients, said data being stored in
RAM and indexed by a lookup table, each of said clients being served said
data via individual Internet connections by said single serving process,
said single serving process replicating when a predetermined limit of

clients has been reached.

10

15

20

WO 00/41455 PCT/CA00/00027

-10-

In accordance with the present invention there is
further provided a computer program embodied on a computer-readable
medium for serving data to a plurality of clients connected to a web server
containing said data, said program being a single process capable of
establishing connections with a plurality of clients and serving data to said
plurality of clients, and said program including means for replicating said
single process only when a predetermined limit of clients has been

reached.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a traditional web server

process;

Figure 2 is a block diagram of the web server process of

the present invention;

Figure 3 is a flow chart illustrating the logical flow of the

web server process of the present invention;

Figure 4 is a chart illustrating the performance of the

present invention in delivering 512 kilobyte files; and

Figure 5 is a chart illustrating the performance of the

present invention in a Psuedo-SPEC benchmark.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is designed to run on any
common operating system, such as Linux, Unix, Solaris or Windows NT.

For illustration purposes, we refer to the FreeBSD operating system and a

10

15

20

25

WO 00/41455 PCT/CA00/00027

-11-

Pentium class personal computer. FreeBSD is a UNIX-derived freely
distributable operating system and is widely supported by volunteer
programmers worldwide. FreeBSD was the platform for the
implementation of the present invention due to its chosen performance,

reliability, scalability, and ease of use and installation.

Currently, many web servers use a separate process for
each socket (i.e. communication) request made to the web server. This
traditional socket programming has been passed on from the design legacy

of FTP servers.

In the traditional architecture a parent process creates a
new child process or thread to serve each request. These threads can
remain through multiple connections but there is still the requirement of
having one per incoming connection. Each child process receives the
clients request and opens the requested file and copies it out over the

network.

The present invention is a small light and very fast web
server. It achieves this by serving multiple connections per process
instead of one per process. A reduction of processes, requires fewer
memory and CPU resources. In addition all files (objects) are pre-loaded
into memory, in UNIX this is virtual memory so it is possible to exceed

the amount of physical RAM installed in the server.

The architecture of the original design of the present
invention used a single process to support up to 255 connections. The
current version has added a parent procéss. This is for the purpose of
recovery in the event of the main process crashing for some unknown
reason. It allows for a graceful restart and to continue serving with almost
no noticeable interruption. This is achieved by retaining important data

structures such as the out bound port in a TCP/IP connection, and current

10

15

20

25

WO 00/41455 PCT/CA00/00027

-12-

memory allocation. This architecture also allows the number of
connections to exceed any system limit by creating more child processes.
In BSD this limit is 250 child process.

The original version of the present invention used the
UNIX function malloc to allocate enough memory for all the files to be
served. At startup the files were then loaded and never touched again.
Any changes made to the disk would not be picked up until the server was
stopped and re-started. The preferred embodiment uses the BSD MMAP

function.

Then end result of MMAP is almost identical to a
malloc of memory space and then loading the file into it. There are
several benefits. Files are not loaded into memory until needed, but the
present invention accesses all RAM after the call to MMAP to force the
files to be loaded to RAM. The biggest advantage is if the installed RAM is
exceeded, instead of loading the files and having the operating system
swap them to the swap space on the disk, meaning writing them to a
special part of the disk and re-reading them later, the memory is reused
and when needed again, the operating system reloads just the part of the

file needed to handle the memory access as if it were still in RAM.

Referring to Figure 1 illustrating a block diagram of a
traditional web server process shown generally as 30, it can be seen that the
parent process 32 controlling the serving of data from server hard drive 34
to clients 36 has spawned a plurality of child processes 38 one for each

client connection 40.

Traditional web servers and FTP servers as shown in

Figure 1 work on the following basic principles.

a) a file request comes into the server through the operating system's

10

15

20

25

WO 00/41455 PCT/CA00/00027

-13-

communication areas;

b) the server sets up a dedicated parent process in memory (RAM or
virtual/swapfile) to handle the TCP/IP networking processes;

¢) sending a request for the file to the operating system and waiting for the
operating system to reply;

d) transferring the requested file to the user;

e) closing the connection when finished and deciding what to do with a
crashed connection; and

f) writing to the log files if necessary

For each concurrent request for a file the server must
duplicate the entire process above. Traditional server software design
requires another copy (child process 38) of the parent process 32 to be
placed in memory and data is retrieved from the hard drive 34 by each

new child process 38. This design results in:

a) high memory usage resulting in memory overflow into virtual
memory (disk space reserved in addition to high-speed RAM) thus
reducing memory access time;

b) using more RAM for child processes 38 or threads leaves less RAM for
caching files and increases hardware requirements; and

¢) more processor cycles required to manage the new child processes 38.

In this model there may be hundreds of new child
processes 38 running and the computer must swap back and forth
according to where attention is required. Much of this swapping ends up

requesting information from the hard drive 34.

Such Web servers are at the mercy of the operating
systems communications layers and hardware speed. For example, the
web server has to open a file handle, open the file, read the file from disk

34 or the CPU system cache, then close the file handle.

WO 00/41455 PCT/CA00/00027

10

15

20

25

-14 -

The present invention works on an entirely different
concept. The original design philosophy of the present invention is that
the web server is copied into memory once, no matter how many
concurrent users there are. Additionally, the web server tries to keep as
much RAM free as possible and whatever RAM is not used by the server is
reserved for the storage of the data being served to clients. Wherever
possible, the present invention avoids using the hard drive of the hosting
computer. Compared to the hard disk, RAM is many orders of magnitude
faster. Once files are stored in RAM, the present invention does not need
to query the operating system as far as finding files that are stored in RAM.
Instead, it uses a table database lookup to store memory addresses within
RAM and keeps this table in the RAM as well. Thus the only data stored
in RAM is:

a) the server process (one copy only);
b) the table database that matches memory addresses with files; and
c) the remainder of the RAM (the majority of RAM), for the files to be

served.

Referring now to Figure 2, a block diagram of the web
server process of the present invention, shown generally as 50, has a single
parent process 32 which accesses data to be served from hard drive 34 upon
initialization of parent process 32. Child processes 38 are created as
required to meet system load requirements. Each child process 38 services

a plurality of clients 36 via client connections 40.

Referring now to Figure 3, a flow chart illustrating the
logical flow of the web server process of the present invention is shown
generally as 60. Initiate server process step 62 initiates the server process
and loads the necessary images and files into RAM (less approximately

256K for the server process). At this time a lookup table is also created for

10

15

20

25

30

WO 00/41455 PCT/CA00/00027

-15-

the files that are stored in RAM. The present invention utilizes MMAP, a
program used by many web servers to manage the files stored in RAM.
With MMAP, files are placed into RAM only when they are requested by
the user for the first time. Subsequently, the file is served directly out of
RAM. This functionality permits the present invention to only put in
RAM the files which are perceived to be more popular (based on that file
being requested at least one time previously). This is especially useful
when there is more data to be served (from the hard disk), than there is
available memory in RAM. If enough RAM is not present, files will be
taken out of RAM and the lookup table, and newly requested files will be
served out of RAM.

At step 64 new TCP/IP socket connections are initialized
by ‘listening' for requests from the operating system. The present
invention never says 'no' to the operating system. It always accepts and if
it reaches the limitation within this loop, that request will be served in the
next loop or by a child process loop. A non-blocking flag is set when
listening for new connections to accept, which means that all connections
are accepted until the queue is clear. At that point the loop sets a non-fatal
error flag, which the present invention catches. This is a small change
from the usual method of accepting connections one at a time, but in

practice it has large performance benefits.

At step 66 the requested data is served to the client. A
check is made to determine if the required data is in RAM. If not, the data
is obtained from disk. Data is served only to existing connections and only
served to clients who are ready to take the data. As mentioned earlier,
since file locations are stored as memory addresses in the lookup table,
knowing what file to serve the client next is determined by knowing what
memory address that client was looking at previously and jumping to the
next space in memory where that file is located. A non-blocking I/0 flag is

set when sending data files to the client machine. This allows the server

10

15

20

25

WO 00/41455 PCT/CA00/00027

-16 -

to send the maximum size chunk of data in each operation. In practice,
the server attempts to send the entire file each time, and the operating
system accepts as much as it is ready for and tells the server how much
that was. This is an improvement over the usual practice of sending

fixed-size chunks, because it avoids some system calls.

Proceeding to step 68 all the finished connections are
located and closed. Normally, when a socket is closed on the server side,
there is a concept called a timewait that occurs. It is a 30 to 60 second delay
in closing the socket and thus consumes resources. The present invention
does not close connections immediately. Instead it waits a few
milliseconds before closing. The result is that the client's side ends up
closing the socket instead and the present invention does not waste

valuable resources.

At step 70 data is written to the log files. With NCSA,
Zeus, Apache and most other servers, logs are in ASCII and grow in size

with great speed. An entry in a log file consists of:

a) the network address that the client connection can from (4 bytes);
b) the time (4 bytes); and

¢) an index into a log index file (4 bytes).

The log index file is in ASCII form and contains a list of filenames and file
lengths. Storing the log files of the present invention in binary format
results in log files approximately 1/20th the size of traditional web server
log files. This not only ensures increased capacity, but also enables the
present invention to spend less time writing log files and more time
serving data. In addition, log files are updated on the hard drive only after
1,000 hits have been recorded in the RAM. This reduces hard drive usage

and significantly improves disk speed.

10

15

20

25

WO 00/41455 PCT/CA00/00027

-17 -

Proceeding to step 72 a test is made to determine if a
new child process copy of the server process is necessary. If so, the loop
returns to step 62 to create a new server process otherwise it returns to step

64 to continue the loop.

The steps 64 to 72 loop continuously. To do everything
in a single process, a UNIX function called SELECT is used. This function
determines which sockets need more information. With native UNIX and
FreeBSD, SELECT caps out at 250 connections. To overcome this
limitation, a second copy of the server process is initiated for every
multiple of 250 connections. Also, the process server keeps a cache of the
file-descriptor-set data structures used with the SELECT system call. These
data structures are somewhat expensive to compute, so the process server
avoids recomputing them if it can use the cached version. This is different
from the usual practice of recomputing them on every trip through the
main loop. For example, if 1,000 concurrent users want information from
the server, the present invention goes through a single “FOR” loop and
begins serving data. After 250 connections have been filled, a second, third
and fourth copy of the server process is initiated for every pass through the
“FOR” loop. A key comparison to make at this point is that traditional web
servers start a new child process for each and every socket connection. The
present invention only starts a child process after the 250 concurrent

sockets limitation has been reached.

When running in multiple-worker-process mode with
more than 250 connections, the workers use a round-robin token-passing
protocol to negotiate which worker listens for new connections. The
worker that owns the token listens for new connections and also processes
its existing connections, while all the other workers only process their
existing connections. When the worker with the token becomes loaded to

at least half its capacity, it passes the token to the next worker in line.

10

15

20

25

WO 00/41455 PCT/CA00/00027

-18 -

There are no known limitations to how many child
processes the present invention can make. Other traditional, physical
limitations of memory size, network card speed, and processing power will

'max out’ before the system of the present invention ever does.

The present invention also includes a feature known as
reftab. This feature allows the user to restrict certain files stored on the
web server, so they may only be served when the proper referer is
supplied. Referers are sent by the clients web browser and indicate which
page is referencing the file to be served. If the administrator of the web
server of the present invention wishes to restrict other sites from copying
content to their own site, most typically by using images from the present
invention in their own .html pages, the administrator may set up a reftab
to prevent this. The reftab file contains lines of the format “filename

referer”, for example:

images/anvil.jpg http://www.acme.com/anvil.html

This entry would ensure that the images/anviljpg could only be fetched
or served via the page http://www.acme.com/anvil.html. Attempt to
fetch it through any other page would result in a “403 Forbidden” error.

Both the filenames and the referers may be wild card patterns. Wildcard

patterns may use “*” meaning any string, or “?” meaning any character.

IIIII

They may also contain which separates multiple patterns. This lets the
system administrator set up some very powerful referer restrictions with a

single line, for example:
*.gif 1*jpg http://www.acme.com/* | http:/ /www.otheracme.com/*
This entry indicates that all GIF and JPEG files must have a referer, and the

referer may be at any URL on either www.acme.com or

www.otheracme.com. Thus, the images may be referenced from anywhere

10

15

20

25

WO 00/41455 PCT/CA00/00027

-19 -

on those two sites, and nowhere else. If no reftab file is present, then there
are no referer restrictions, and any page anywhere on the web is allowed to
link to the files on the web server. The resolution of filenames that make
use of wildcard patterns is done at start up so that there are no expensive

wildcard matches required at run time.
Benchmark Results

The present invention is a high efficiency server
solution that can be used as a stand-alone server for static web pages or as a
capacity enhancement appliance used with existing servers to increase
capacity or to protect a server system against overload caused by traffic
peaks. As a stand-alone server or as a co-server, the present invention can
handle over 2,875 hits per second and over 4,000 concurrent users. These
performance results are even more impressive given they were achieved
on an inexpensive hardware platform. Performance can be improved
even further if more efficient Ethernet drivers are used given that on the
test FreeBSD system the standard drivers used 70% of the available power
of the 400 Mhz Pentium II Processor.

In a recent test run on a hardware platform (consisting
of a 400 Mhz Pentium Pro processor and motherboard, 1 gigabyte of RAM,
a 1 gigabyte Ethernet card, and 1 VGA card) the present invention handled

over 3,200 hits per second.

In addition, the present invention handled 1,240 hits
per second in a test similar to the SpecWeb9%6 test. Each of these results are
significantly better than performance of Apache or Zeus-based software

running on the same hardware platform.

However, the most compelling statistic is that the

present invention is able to handle over 4,000 concurrent users. This is

10

15

20

25

WO 00/41455 PCT/CA00/00027

-20-

significantly higher than similar servers that use Apache (90 users), httpd
(250), or Zeus (1,000 users) software. In fact, the present invention may be
able to handle significantly more users because its absolute limit was never
reached due to the capacity limits of the testing infrastructure. Handling
multiple concurrent users is particularly valuable for sites with high peak

demand.

Figure 4 illustrates the efficiency of the present
invention over existing servers. The vertical axis is operations per second
x 103 and the horizontal axis is the number of simultaneous users. The
results for the present invention are charted at line 80. As can be seen, the
present invention has less per connection overhead than the Zeus server

(line 82), a small custom server thttpd (line 84), and Apache (line 86).

Referring now to Figure 5, in the Pseudo-SPEC test
using the same four servers, once again the efficiency of the present
invention as illustrated at line 90 is greater than that of the Zeus server
(line 92), a small custom server thttpd (line 94), and Apache (line 96). The
Pseudo-SPEC bench mark is a mix of files ranging in size from a 102 bytes
to 900 kilobytes.

Having the present invention working independently
or in conjunction with existing servers increases capacity, reduces response

time and prevents servers from crashing during peak demands.

As will be understood by those skilled in the art, the
various constant values and selected options mentioned within this

disclosure such as:

a) the size, format and frequency of writing of log file entries;
b) the number of files the web server may serve;

c) the size of the web server process;

WO 00/41455 PCT/CA00/00027

-21-

d) the use of FreeBSD as the operating system;
e) the number of simultaneous client connections; and
f) the use TCP/IP.

are all design choices which do not preclude the use of other choices, while

still practicing the invention as disclosed.

WO 00/41455 ' PCT/CA00/00027

10

15

20

25

-22-

I CLAIM:

1. A method for implementing a web server, said method
comprising the steps of:

a) initializing a memory resident web server parent
process;

b) establishing a communication connection with each
requesting client;

c) serving data to said each requesting client; and

d) continually repeating steps b) to c), wherein the
method includes communicating with a plurality of requesting clients

simultaneously through the web server parent process.

2. The method of claim 1 wherein a child process is
initiated to execute said method if said parent process has established a
maximum number of communication connections and wherein a new
child process is initiated whenever each previously initiated child process

has established a maximum number of communication connections.

3. The method of claim 2 wherein said data is stored in
RAM and indexed by a lookup table.

4, The method of claim 3 wherein said communication

connection is a TCP/IP socket.

5. The method of claim 4 further comprising the step of
within the loop b) to ¢), waiting for said each requesting client to close said

communication connection.

6. The method of claim 5 further comprising the step of,
before step c), writing information to a log file, said information being in

binary format.

10

15

20

25

WO 00/41455 PCT/CA00/00027

-23-

7. The method of claim 6 wherein all processes take a turn
in being responsible for establishing new communication connections

with requesting clients.

8. The method of claim 7 further comprising the step of,
prior to step a), creating a reftab, said reftab containing a plurality of
restricted data entries, each restricted data entry comprising the name of an
object on said web server and a referer name, wherein said referer name
may contain any of the tokens "*", "?", or "|", for enabling restricted access

to the object referenced by said restricted data entries.

9. The method of claim 8, wherein each of said referer
names containing said tokens is resolved upon initiation of said parent

process.

10. A web server comprising;:

a) a computing environment;

b) a single web server parent process within said
computing environment, said single process being resident in RAM for
serving a plurality of clients;

¢) communication means for establishing a plurality of
communication links, each of said links connecting said single process to
one of said plurality of clients; and

d) data serving means for serving data from said single
process to each of said plurality of clients via the communication links

connected to said clients.

11. The server of claim 10 further comprising means for
creating at least one subsequent RAM resident web server child process to
serve said clients if said parent process is unable to adequately serve said

plurality of clients.

10

15

20

25

WO 00/41455 PCT/CA00/00027

-24 -

12. The server of claim 11 including means for storing said

data in RAM and indexing said data by a lookup table.

13. The server of claim 12 wherein said communication
means includes means for establishing a TCP/IP socket connection with

each of said plurality of clients.

14. The server of claim 13 further comprising a log file, said

log file containing information in binary format.

15. The server of claim 14 including sharing means for
causing said processes to share in the establishing of said communication

links.

16. The server of claim 15 further comprising a reftab, said
reftab containing a plurality of restricted data entries, each restricted data
entry comprising the name of an object on said web server and a referer
name, wherein said referer name may contain any of the tokens "*", "?",
or "|", for enabling restricted access to the object referenced by said

restricted data entries.

17. The server of claim 16, wherein each of said referer
names containing said tokens is resolved upon initiation of said parent

process.

18. The server of claim 17 wherein said processes wait for

said clients to terminate said communication links.

19. A web server connected to the Internet, said web server
being one of a plurality of computers connected to the Internet, said web

server having a single serving process, said single process being resident in

10

15

20

25

WO 00/41455 PCT/CA00/00027

-25.-

RAM and serving data to a plurality of clients, said data being stored in
RAM and indexed by a lookup table, each of said clients being served said
data via individual Internet connections by said single serving process,
said single serving process replicating when a predetermined limit of

clients has been reached.

20. The web server of claim 19 wherein said Internet

connections are TCP/IP sockets.

21. The web server of claim 20 further comprising a log file,
said log file containing information on data served by said server, said

information being in binary format.

22, The web server of claim 21 including sharing means for
causing all processes to take a turn in being responsible for establishing

said Internet connections.

23. The server of claim 22 further comprising a reftab, said
reftab containing a plurality of restricted data entries, each restricted data
entry comprising the name of an object on said web server and a referer
name, wherein said referer name may contain any of the tokens ™", "?",

"lll

or "|", for enabling restricted access to the object referenced by said

restricted data entries.

24. The web server of claim 23 wherein each of said referer
names containing said tokens is resolved upon initiation of said single

process.

25. A computer program embodied on a computer-readable
medium for serving data to a plurality of clients connected to a web server
containing said data, said program being a single process capable of

establishing connections with a plurality of clients and serving data to said

WO 00/41455 PCT/CA00/00027

-26-

plurality of clients, and said program including means for replicating said
single process only when a predetermined limit of clients has been

reached.

PCT/CA00/00027

WO 00/41455

1/5

%wm

Wi
1N3MO

wM/W

Li#
AN3ITO

wi

$S3004d

aTiHO

B JE

ve V\l/

3AAIHA
QyvH

ﬂ\

9¢

A7

0¢

L

$$3004d

amHO

H3AH3S
g3M

)
N~

$S3004d
IN3HVd

A

8¢

7

ct

SUBSTITUTE SHEET (RULE 26)

WO 00/41455 PCT/CA00/00027

2/5
jﬁ
38 40 CLIENT

32 > G #1

/-) CHILD

PARENT PROCESS .
PROCESS .
T @
|
| . 40 CLIENT
I #n
|
|
|
|

U

36
WEB 40 f')
SERVER CHILD (7
HARD PROCESS CLIENT
DRIVE
#m
34 B o
38 d
L]
@

a0
/ CLIENT

36

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 00/41455 PCT/CA00/00027

3/5

r§2
60
INITIATE
[SERVER '/

PROCESS

64

Y

3
LISTEN
| FOR
REQUESTS

Y o

SERVE
DATA

68
Y

CLOSE
ONNECTIONS

I 70

WRITETO
LOG FILE

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/41455

ops/second x 103

3.40
3.20
3.00
2.80
2.60
2.40
2.20
2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

PCT/CA00/00027

4/5

Small Files

80

82

84

86

0.00 50.00 100.00 150.00 200.00 250.00
Simultaneous users

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 00/41455 PCT/CA00/00027

5/5

Pseudo-SPEC

1.30 — 90
1.20 +-~—~ —/-“ 92

110 [I L . a~
) ______ﬁ\/ 94
1.007

0.90

=== 3

N\

103

N

X
o
®
o
S

/ 96

aeveeY "snsoene decenn
. 1 .. .ae o
.

0.70 PN 7
0.60 —+ 4
0.50 — /
0.40
0.30
0.20 +—+*
0.10 7

0.00

ops/second

0.00 50.00 100.00 150.00 200.00 250.00
Simultaneous users

FIG. 5

SUBSTITUTE SHEET (RULE 26)

	Biblio.	(p. 1)
	Desc.	(p. 3)
	Claims	(p. 24)
	Drawings	(p. 29)

